Roles of programmed death-1 (PD-1)/PD-1 ligands pathway in the development of murine acute myocarditis caused by coxsackievirus B3.
نویسندگان
چکیده
OBJECTIVE This study was designed to investigate the roles of programmed death-1 (PD-1) and PD-1 ligands (PD-L) in the development of murine acute myocarditis caused by Coxsackievirus B3. PD-1/PD-L belong to the CD28/B7 superfamily, and the PD-1/PD-L pathway is known to transduce a negative immunoregulatory signal that antagonizes the T-cell receptor-CD28 signal and inhibits T-cell activation. METHODS We first analyzed the expression of PD-L1/PD-L2 on cardiac myocytes in vivo and in vitro. Second, we examined the effects of in vivo treatment with an anti-PD-1, PD-L1, or PD-L2 monoclonal antibodies on the development of myocardial inflammation in C3H/He mice infected with Coxsackievirus B3. Third, to investigate the effects of anti-PD-1 monoclonal antibody treatment on the activation of the infiltrating cells, we examined the expression of interleukin (IL)-2, interferon (IFN)-gamma, CD40 ligand (CD40L), Fas ligand (FasL), and perforin as activation markers in mouse hearts by a semiquantitative PCR method. RESULTS PD-L1 was markedly induced on cardiac myocytes with acute myocarditis. In vivo anti-PD-1 or -PD-L1 blocking monoclonal antibody treatment increased the myocardial inflammation whereas anti-PD-1 stimulating monoclonal antibody treatment decreased the myocardial inflammation, and anti-PD-L2 monoclonal antibody treatment had no effect. Anti-PD-1 monoclonal antibody treatment significantly increased the expression of IFN-gamma, FasL, CD40L, perforin, and Coxsackievirus B3 genomes in myocardial tissue. CONCLUSION Our findings strongly suggest that the PD-1/PD-L1 pathway played a pivotal role in suppressing myocardial inflammation and raise the possibility of immunotherapy by stimulating the PD-1/PD-L1 pathway to prevent myocardial damage in viral myocarditis.
منابع مشابه
Regulation of Trypanosoma cruzi-induced myocarditis by programmed death cell receptor 1.
Trypanosoma cruzi infection causes intense myocarditis, leading to cardiomyopathy and severe cardiac dysfunction. Protective adaptive immunity depends on balanced signaling through a T cell receptor and coreceptors expressed on the T cell surface. Such coreceptors can trigger stimulatory or inhibitory signals after binding to their ligands in antigen-presenting cells (APC). T. cruzi modulates t...
متن کاملPD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model.
Negative regulatory mechanisms within the solid tumor microenvironment inhibit antitumor T-cell function, leading to evasion from immune attack. One inhibitory mechanism is up-regulation of programmed death-ligand 1 (PD-L1) expressed on tumor or stromal cells which binds to programmed death-1 (PD-1) on activated T cells. PD-1/PD-L1 engagement results in diminished antitumor T-cell responses and...
متن کاملStructure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy
Programmed Cell Death-1 (PD-1) is an inhibitory immune receptor, which plays critical roles in T cell co-inhibition and exhaustion upon binding to its ligands PD-L1 and PD-L2. We report the crystal structure of the human PD-1 ectodomain and the mapping of the PD-1 binding interface. Mutagenesis studies confirmed the crystallographic interface, and resulted in mutant PD-1 receptors with altered ...
متن کاملCoxsackievirus B3 protease 3C induces cell death in eukaryotic cells
Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...
متن کاملProgrammed Cell Death-1/Programmed Death-ligand 1 Pathway: A New Target for Sepsis
OBJECTIVE Sepsis remains a leading cause of death in many Intensive Care Units worldwide. Immunosuppression has been a primary focus of sepsis research as a key pathophysiological mechanism. Given the important role of the negative costimulatory molecules programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) in the occurrence of immunosuppression during sepsis, we reviewed litera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 75 1 شماره
صفحات -
تاریخ انتشار 2007